高一數學優(yōu)秀教案集錦
高一數學優(yōu)秀教案集錦
數學優(yōu)秀教案篇一:高一數學優(yōu)秀教案集
1.集合與函數概念實習作業(yè)
一、教學內容分析
《普通高中課程標準實驗教科書·數學(1)》(人教A版)第44頁。-----《實習作業(yè)》。本節(jié)課程體現數學文化的特色,學生通過了解函數的發(fā)展歷史進一步感受數學的魅力。學生在自己動手收集、整理資料信息的過程中,對函數的概念有更深刻的理解;感受新的學習方式帶給他們的學習數學的樂趣。
二、學生學習情況分析
該內容在《普通高中課程標準實驗教科書·數學(1)》(人教A版)第44頁。學生第一次完成《實習作業(yè)》,積極性高,有熱情和新鮮感,但缺乏經驗,所以需要教師精心設計,做好準備工作,充分體現教師的“導演”角色。特別在分組時注意學生的合理搭配(成績的好壞、家庭有無電腦、男女生比例、口頭表達能力等),選題時,各組之間盡量不要重復,盡量多地選不同的題目,可以讓所有的學生在學習共享的過程中受到更多的數學文化的熏陶。
三、設計思想
《標準》強調數學文化的重要作用,體現數學的文化的價值。數學教育不僅應該幫助學生學習和掌握數學知識和技能,還應該有助于學生了解數學的價值。讓學生逐步了解數學的思想方法、理性精神,體會數學家的創(chuàng)新精神,以及數學文明的深刻內涵。
四、教學目標1.了解函數概念的形成、發(fā)展的歷史以及在這個過程中起重大作用的歷史事件和人物;
2.體驗合作學習的方式,通過合作學習品嘗分享獲得知識的快樂;
3.在合作形式的小組學習活動中培養(yǎng)學生的領導意識、社會實踐技能和民主價值觀。
五、教學重點和難點
重點:了解函數在數學中的核心地位,以及在生活里的廣泛應用;
難點:培養(yǎng)學生合作交流的能力以及收集和處理信息的能力。
六、教學過程設計
【課堂準備】
1.分組:4~6人為一個實習小組,確定一人為組長。教師需要做好協調工作,確保每位學生都參加。
2.選題:根據個人興趣初步確定實習作業(yè)的題目。教師應該到各組中去了解選題情況,盡量多地選擇不同的題目。
參考題目:(1)函數產生的社會背景;(2)函數概念發(fā)展的歷史過程;(3)函數符號的故事;(4)數學家(如:開普勒、伽利略、笛卡兒、牛頓、萊布尼茲、貝努利、歐拉、柯西、狄里克雷、羅巴契夫斯基等)與函數;(5)也可自擬題目
3.分配任務:根據個人情況和優(yōu)勢,經小組共同商議,由組長確定每人的具體任務。
4.搜集資料:針對所選題目,通過各種方式(相關書籍----《函數在你身邊》、《世界函數通史》、《世界著名科學家傳記》等;搜集素材,包括文字、圖片、數據以及音像資料等,并記錄相關資料,寫出實習報告。
6.把各組的實習報告,貼在班級的學習欄內,讓學生學習交流。
【教學過程】
1.出示課題:交流、分享實習報告
2.交流、分享:(由數學科代表主持。小組推薦中心發(fā)言人;以下記錄均為發(fā)言概述)
。1)學生1:函數小史
數學史表明,重要的數學概念的產生和發(fā)展,對數學發(fā)展起著不可估量的作用。有些重要的數學概念對數學分支的產生起著奠定性的作用。我們剛學過的函數就是這樣的重要概念。在笛卡爾引入變量以后,變量和函數等概念日益滲透到科學技術的各個領域。最早提出函數(function)概念的,是17世紀德國數學家萊布尼茨。最初萊布尼茨用“函數”一詞表示冪。1755年,瑞士數學家歐拉把給出了不同的函數定義。中文數學書上使用的“函數”一詞是轉譯詞。是我國清代數學家李善蘭在翻譯《代數學》(1895年)一書時,把“function”譯成“函數”的。我們可以預計到,關于函數的爭論、研究、發(fā)展、拓廣將不會完結,也正是這些影響著數學及其相鄰學科的發(fā)展。
。2)教師帶頭鼓掌并簡單評價
。3)學生2:函數概念的縱向發(fā)展:
該同學從早期函數概念——幾何觀念下的函數到十八世紀函數概念——代數觀念下的函數講述了函數概念的發(fā)展。其中包括18世紀中葉著名的數學家歐拉對函數概念發(fā)展的貢獻。接著又講述了十九世紀函數概念——對應關系下的函數。以及現代函數概念——集合論下的函數。函數概念的定義經過三百多年的錘煉、
變革,形成了函數的現代定義形式。
。4)教師帶頭鼓掌并簡單評價
。5)學生3:我國數學家李國平與函數
學生3描述了數學家中國科學院數學物理學部委員.李國平(1910—1996),的身世和他的成長歷程。李國平1933年畢業(yè)于中山大學數學天文系。后歷任中國科學院數學計算技術研究所所長,中國科學院武漢數學物理研究所所長,中國數學會理事,中國科學院學部委員等職務。學生還通俗地講述了李國平先生在微分方程復變函數論領域的卓越貢獻。
。6)教師帶頭鼓掌并簡單評價
。7)學生4:函數概念對數學發(fā)展的影響
該學生從歷史上重要數學概念對數學發(fā)展的作用是不可估量的事實出發(fā),講述了函數概念對數學發(fā)展的深刻影響,可以說是貫穿古今、曠日持久、作用非凡,回顧函數概念的歷史發(fā)展,看一看函數概念不斷被精煉、深化、豐富的歷史過程,是一件十分有益的事情,它不僅有助于我們提高對函數概念來龍去脈認識的清晰度,而且更能幫助我們領悟數學概念對數學發(fā)展,數學學習的巨大作用.函數概念來源于代數學中不定方程的研究.由于羅馬時代的丟番圖對不定方程已有相當研究,所以函數概念至少在那時已經萌芽.該學生說道,早在函數概念尚未明確提出以前,數學家已經接觸并研究了不少具體的函數,比如對數函數、三角函數、雙曲函數等等.1673年前后笛卡兒在他的解析幾何中,已經注意到了一個變量對于另一個變量的依賴關系,但由于當時尚未意識到需要提煉一般的函數概念,因此直到17世紀后期牛頓、萊布尼茲建立微積分的時候,數學家還沒有明確函數的一般意義.
從以上函數概念發(fā)展的全過程中,我們體會到,聯系實際、聯系大量數學素材,研究、發(fā)掘、拓廣數學概念的內涵是何等重要.
。8)教師帶頭鼓掌并簡單評價
(9)學生5:函數概念的歷史演變過程
該學生說,數學的抽象完全舍棄了事物的質的內容,而僅僅保留了它們的量的屬性,即數學抽象的目的只是數量關系和空間形式.這就決定了數學與其它自然科學的區(qū)別,也決定了數學的特殊性.如果在兩個集合元素之間存在有確定的對應關系,就稱為是一個映射.
上述函數概念的歷史演變過程,就是一系列弱抽象的過程.學生展示了下表:早期函數概念
代數函數
函數是這樣一個量,它是通過其它一些量的代數運算得到的
近代函數概念
映射函數
設M與N是兩個集合,f是個法則,若對于m中每一個元素x,由f總有N中唯一確定元素y與之對應,則f是定義在M上的一個函數.
在認識自然、改造自然的過程中不斷遇到:在數量上描述一些現象的幾個不同的量是緊密地互相聯系的,一個量完全決定于其它量的值,即通過其它量值的一些代數運算
18世紀函數概念
解析函數
函數是指由一個變量與一些常量通過任何方式形成的解析表達式
19世紀函數概念
變量函數
對于給定區(qū)間上的每一個x值,y總有唯一確定的值與之對應,則稱y是x的函數.
。10)教師帶頭鼓掌并簡單評價
3.課堂小結:
4.實習作業(yè)的評定:
數學優(yōu)秀教案篇二:初中數學教學設計大全
1、《不等式及其解集》教學設計
一、內容和內容解析
。ㄒ唬﹥热
概念:不等式、不等式的解、不等式的解集、解不等式以及能在數軸上表示簡單不等式的解集.
。ǘ﹥热萁馕
現實生活中存在大量的相等關系,也存在大量的不等關系.本節(jié)課從生活實際出發(fā)導入常見行程問題的不等關系,使學生充分認識到學習不等式的重要性和必然性,激發(fā)他們的求知欲望.再通過對實例的進一步深入分析與探索,引出不等式、不等式的解、不等式的解集以及解不等式幾個概念.前面學過方程、方程的解、解方程的概念.通過類比教學、不等式、不等式的解、解不等式幾個概念不難理解.但是對于初學者而言,不等式的解集的理解就有一定的難度.因此教材又進行數形結合,用數軸來表示不等式的解集,這樣直觀形象的表示不等式的解集,對理解不等式的解集有很大的幫助.
基于以上分析,可以確定本節(jié)課的教學重點是:正確理解不等式、不等式的解與解集的意義,把不等式的解集正確地表示在數軸上.
二、目標和目標解析
。ㄒ唬┙虒W目標
1.理解不等式的概念
2.理解不等式的解與解集的意義,理解它們的區(qū)別與聯系
3.了解解不等式的概念
4.用數軸來表示簡單不等式的解集
。ǘ┠繕私馕
1.達成目標1的標志是:能正確區(qū)別不等式、等式以及代數式.
2.達成目標2的標志是:能理解不等式的解是解集中的某一個元素,而解集是所有解組成的一個集合.
3.達成目標3的標志是:理解解不等式是求不等式解集的一個過程.
4、達成目標4的標志是:用數軸表示不等式的解集是數形結合的又一個重要體現,也是學習不等式的一種重要工具.操作時,要掌握好“兩定”:一是定界點,一般在數軸上只標出原點和界點即可,邊界點含于解集中用實心圓點,或者用空心圓點;二是定方向,小于向左,大于向右.
三、教學問題診斷分析
本節(jié)課實質是一節(jié)概念課,對于不等式、不等式的解以及解不等式可通過類比方程、方程的解、解方程類比教學,學生不難理解,但是對不等式的解集的理解就有一定的難度.
因此,本節(jié)課的教學難點是:理解不等式解集的意義以及在數軸上正確表示不等式的解集.
四、教學支持條件分析
利用多媒體直觀演示課前引入問題,激發(fā)學生的學習興趣.
五、教學過程設計
。ㄒ唬﹦赢嬔菔厩榫凹と
多媒體演示:兩個體重相同的孩子正在蹺蹺板上做游戲,現在換了一個大人上去,蹺蹺板發(fā)生了傾斜,游戲無法繼續(xù)進行下去了,這是什么原因呢?
設計意圖:通過實例創(chuàng)設情境,從“等”過渡到“不等”,培養(yǎng)學生的觀察能力,分析能力,激發(fā)他們的學習興趣.
。ǘ┝⒆銓嶋H引出新知
問題一輛勻速行駛的汽車在11︰20距離A地50km,要在12︰00之前駛過A地,車速應滿足什么條件?
小組討論,合作交流,然后小組反饋交流結果.
最后,老師將小組反饋意見進行整理(學生沒有討論出來的思路老師進行補充)
1.從時間方面慮:2.從行程方面:<>50
3.從速度方面考慮:x>50÷
設計意圖:培養(yǎng)學生合作、交流的意識習慣,使他們積極參與問題的討論,并敢于發(fā)表自己的見解.老師對問題解決方法的梳理與補充,發(fā)散學生思維,培養(yǎng)學生分析問題、解決問題的能力.
。ㄈ┚o扣問題概念辨析
1.不等式
設問1:什么是不等式?
設問2:能否舉例說明?由學生自學,老師可作適當補充.比如:是不等式.
2.不等式的解
設問1:什么是不等式的解?
設問2:不等式的解是唯一的嗎?
由學生自學再討論.
老師點撥:由x>50÷得x>75
說明x任意取一個大于75的數都是不等式3.不等式的解集
設問1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都
設問2:不等式的解集與不等式的解有什么區(qū)別與聯系?
由學生自學后再小組合作交流.
老師點撥:不等式的解是不等式解集中的一個元素,而不等式的解集是不等式所有解組成的一個集合.
4.解不等式
設問1:什么是解不等式?
由學生回答.
老師強調:解不等式是一個過程.
設計意圖:培養(yǎng)學生的自學能力,進一步培養(yǎng)學生合作交流的意識.遵循學生的認知規(guī)律,有意識、有計劃、有條理地設計一些問題,可以讓學生始終處于積極的思維狀態(tài),不知不覺中接受了新知識.老師再適當點撥,加深理解.
。ㄋ模⿺敌谓Y合,深化認識
問題1:由上可知,x>75既是不等式的解集.那么在數軸上如何表示x>75呢?
問題2:如果在數軸上表示x≤75,又如何表示呢?
由老師講解,注意規(guī)范性,準確性.
老師適當補充:“≥”與“≤”的意義,并強調用“≥”或“≤”連接的式子也是不等式.比如x≤75就是不等式.
設計意圖:通過數軸的直觀讓學生對不等式的解集進一步加深理解,滲透數形結合思想.
。ㄎ澹w納小結,反思提高
教師與學生一起回顧本節(jié)課所學主要內容,并請學生回答如下問題
1、什么是不等式?
。嫉慕饧,也是不等式>50
2、什么是不等式的解?
3、什么是不等式的解集,它與不等式的解有什么區(qū)別與聯系?
4、用數軸表示不等式的解集要注意哪些方面?
設計意圖:歸納本節(jié)課的主要內容,交流心得,不斷積累學習經驗.
(六)布置作業(yè),課外反饋
教科書第119頁第1題,第120頁第2,3題.
設計意圖:通過課后作業(yè),教師及時了解學生對本節(jié)課知識的掌握情況,以便對教學進度和方法進行適當的調整.
六、目標檢測設計
1.填空
下列式子中屬于不等式的有___________________________
①x+7>
、冖趚≥y+2=0④5x+7
設計意圖:讓學生正確區(qū)分不等式、等式與代數式,進一步鞏固不等式的概念.
2.用不等式表示
、賏與5的和小于7
、赼的與b的3倍的和是非負數
、壅叫蔚倪呴L為xcm,它的周長不超過160cm,求x滿足的條件
設計意圖:培養(yǎng)學生審題能力,既要正確抓住題目中的關鍵詞,如“大于(小于)、非負數(正數或負數)、不超過(不低于)”等等,正確選擇不等號,又要注意實際問題中的數量的實際意義.
數學優(yōu)秀教案篇三:人教版三年級數學優(yōu)秀教學設計
s課題:秒的認識
教學設計:陳聽。
教學內容:均衡生產書第2~4頁的內容。
教學目標:
1、認識時間單位秒,春蘭秋菊1分=60秒,以及秒在生活中的應用。
2、通過觀察、體驗等教學活動,逐步建立1秒、1分的時間觀念。
3、結合教學內容適時滲透珍惜時間的教育。
教學重點:認識時間單位秒,知道1分=60秒,建立1秒、1分的時間觀念。
教學難點:建立1秒、1分的時間觀念。
教學準備:帶秒針的實物鐘表、能顯示到秒的電子表、秒表、多媒體課件。練習紙。
教學過程:
。ㄒ唬﹦(chuàng)設情境,導入新課
出示主題圖,先讓學生描述這些情境。再讓學生說一說生活中自己所經歷的比1分鐘短的事情及計量的經歷。揭示課題?秒的認識?.
。ㄔO計意圖:充分利用學生已有的生活經驗。讓學生初
步了解計量比1分鐘短的時間需要用秒作單位,感知秒在生活中的應用,激發(fā)學生的學習熱情).
。ǘ┱J識時間單位?秒?
1.認識?秒?
引導學生觀察秒針的轉動,思考并回答:秒針是怎樣告訴我們時間過去幾秒的呢?
預設:通過秒針超過的小格數計秒;通過秒針走動時發(fā)出的滴答聲計秒。
教師應充分肯定,并強調:秒針走1小格的時間是1秒,秒針走幾小格就是幾秒。(板書:秒針走1小格的時間是1秒).
。2)計量5秒、十幾秒。
演示課件:秒針走過1大格。讓學生說一說秒針走1大格時間過去了幾秒。強調:秒針走1小格的時間是1秒,秒針走1大格的時間是5秒。
演示課件:秒針走過12小格,讓學生通過觀察、思考說出:秒針走過12小格,時間過去了12秒,進一步引導學生通過數大格加小格的方法,快速計算出秒針走過的區(qū)域,算出經過時間。
。ㄔO計意圖:學生在學習秒的認識之前已學習了時、分的認識,對于鐘面上指針與制度的關系有一定的感性認識。此環(huán)節(jié)中讓學生帶著問題?秒針是怎樣告訴我們時間過去幾
秒的呢??思考并回答,有利于培養(yǎng)學生的觀察能力,喚起學生對已有知識和經驗的應用,也便于教師了解學生的現實觀點).
2.認識秒與分的關系。
。1)制造認知沖突,突破教學難點。
師:秒針走兩大格經過的時間是10秒,那么秒針從刻度12到刻度10,經過多少秒?
。▽W生如果沒有秒針按喱針走動的表象積累。受慣性思維影響,會誤認為刻度12到刻度10之間有兩大格,是10小格,所以經過的時間是10秒。教師需要組織學生交流,并通過觀察秒針的走動。進一步明晰鐘面上指針的運動方向及鐘面結構。)
。2)掌握秒針已經從12到10,如果秒針繼續(xù)走2大格,剛好走了1圈回到12,經過的時間是多長?秒針走一圈,分針會有什么變化?
再次引導學生觀察秒針走1圈時分針的變化,體會分、秒之間的關系,得出1分=60秒。(板書:1分=60秒)
。3)喚起舊知,系統整理。
師:看到?1分=60秒?,你能想到哪些相關的知識?可結合鐘面,讓學生說一說秒針走一圈,分針走了多少格:分針走一圈,時針走了多少格,讓學生對時間單位之間的關系形成整體的認識。
。ㄔO計意圖:這一環(huán)節(jié)的教學需要學生不斷地觀察秒針的轉動,教學中可以使用實物鐘體為教具,但實物鐘的秒針無法隨意撥動,也不能停下來,使用不方便?墒褂帽緯?多媒體資源?中提供的鐘表課件,使學生直觀地看到秒針走動的起點和終點,還能同時做上標記,于學生理解并掌握分與秒的進率。)
3.認識其他常見的計量?秒?的工具。
師:怎樣計量用?秒?作單位的時間?
預設:學生會提到帶秒針的鐘表、電子表、秒表等。教師均給予肯定,并結合學生回答展示電子表、秒表等計時工具。
(1)介紹電子表。
出示電子表實物或圖片,說明:兩個圓點左邊的數表示幾時,右邊的數表示幾分,右下角的數表示幾秒。
。2)介紹秒表
秒表,是體育運動中常用的計時工具,在教學、比賽和訓練中常用來記錄以秒為單位的時間。
出示機械秒表實物或圖片,說明:在它的下面是一個大表盤,上方有小表盤。秒針沿大表盤轉動,分針沿小表盤轉動。長針為秒針,秒針每轉一圈是60秒,其中一小格為1秒,一大格為5秒;小表盤內的短針是分針,分針每轉一圈是30分;記數時只要把分針和秒針所指的時間相加就是所
測的時間。
出示電子秒表實物或圖片,說明:這里兩個圓點左面的數表示的是幾分,右面的數表示的是幾秒,右下角的數表示的是多少個1/100秒。
。3)比較各種計量工具,明確各自用途。
(設計意圖:充分利用學生已有的生活經驗,認識時間的計量工具,注意讓學生體會它們的不同用途。鐘面和電子表主要用來表示時刻,秒表用來計量時間的長短。同時,可以結合計量工具的認識,進一步體會這三個時間單位在表示時刻和時間長短時的用法。)
。ㄈw驗時間的長短,建立?1秒??1分?的時間觀念。
1.體驗1秒的長短。
(1)初體驗—10秒的小測試。
交待任務,明確游戲規(guī)則:老師說?開始?,就閉上眼睛:你認為10秒到了,就悄悄地舉手告訴老師;睜開眼睛后看看是多少秒。
。2)反饋交流,驗證調整。
測試后,反饋交流自己估計的方法。
預設:學生會提到拍手、眨眼、數數等方法。
教師要關注估計準確的和偏差較大的兩類學生,讓學生說一說他們的方法,再引導學生根據秒針轉動的節(jié)奏進行驗
【高一數學優(yōu)秀教案】相關文章:
高一數學經驗總結03-19
數學單項式教案10-25
數學教案:圓的認識02-12
數學因真實而精彩教案03-20
認識球體數學教案03-20
蘇教版數學分數的教案03-20
高三數學的復習教案03-19
雨花石的優(yōu)秀教案09-14
數學活動教案之看看數數03-20