1. <rp id="zsypk"></rp>

      2. 實(shí)用文檔>一次方程組的應(yīng)用教案

        一次方程組的應(yīng)用教案

        時(shí)間:2022-09-15 18:25:54

        一次方程組的應(yīng)用教案(精選10篇)

          作為一位兢兢業(yè)業(yè)的人民教師,可能需要進(jìn)行教案編寫工作,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。我們該怎么去寫教案呢?下面是小編精心整理的一次方程組的應(yīng)用教案,僅供參考,歡迎大家閱讀。

        一次方程組的應(yīng)用教案(精選10篇)

          一次方程組的應(yīng)用教案 篇1

          一、素質(zhì)教育目標(biāo)

          (一)知識(shí)教學(xué)點(diǎn)

          會(huì)列二元一次方程組解簡單的應(yīng)用題,并能檢查結(jié)果是否正確、合理.

         。ǘ┠芰τ(xùn)練點(diǎn)

          培養(yǎng)學(xué)生分析問題、解決問題的能力.

         。ㄈ┑掠凉B透點(diǎn)

          1.體會(huì)代數(shù)方法的優(yōu)越性.

          2.向?qū)W生進(jìn)一步滲透把未知轉(zhuǎn)化為已知的思想.

          3.向?qū)W生進(jìn)行理論聯(lián)系實(shí)際的教育.

          (四)美育滲透點(diǎn)

          學(xué)習(xí)列方程組解應(yīng)用題時(shí),若能在錯(cuò)綜復(fù)雜的關(guān)系中抓住問題的關(guān)鍵,就能迅速通過相等求解,從而滲透解題的.簡捷性的數(shù)學(xué)美,以及解題的奇異美.

          二、學(xué)法引導(dǎo)

          1.教學(xué)方法:嘗試指導(dǎo)法、觀察法、講練結(jié)合法.

          2.學(xué)生學(xué)法:本節(jié)主要學(xué)習(xí)列二元一次方程組和三元一次方程組解應(yīng)用題的方法,尤其重點(diǎn)要掌握列出二元一次方程組解應(yīng)用題,其分析方法和解題步驟都與前面學(xué)過的列一元一次方程解應(yīng)用題類似,可在學(xué)習(xí)中進(jìn)行類比從而加強(qiáng)理解.

          三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法

         。ㄒ唬┲攸c(diǎn)與難點(diǎn)

          根據(jù)簡單應(yīng)用題的題意列出二元一次方程組.

         。ǘ┮牲c(diǎn)

          正確找出表示應(yīng)用題全部含義的兩個(gè)相等關(guān)系,并把它們表示成兩個(gè)方程.

          (三)解決辦法

          通過反復(fù)讀題、審題,分析出題目中存在的兩個(gè)相等關(guān)系是列方程組的關(guān)鍵.

          一次方程組的應(yīng)用教案 篇2

          教學(xué)目標(biāo)

          1.使學(xué)生會(huì)用代入消元法解二元一次方程組;

          2.理解代入消元法的基本思想體現(xiàn)的“化未知為已知”,“變陌生為熟悉”的化歸思想方法;

          3.在本節(jié)課的教學(xué)過程中,逐步滲透樸素的辯證唯物主義思想.

          教學(xué)重點(diǎn)和難點(diǎn)

          重點(diǎn):用代入法解二元一次方程組.

          難點(diǎn):代入消元法的基本思想.

          課堂教學(xué)過程設(shè)計(jì)

          一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

          1.誰能造一個(gè)二元一次方程組?為什么你造的方程組是二元一次方程組?

          2.誰能知道上述方程組(指學(xué)生提出的方程組)的解是什么?什么叫二元一次方程組的解?

          3.上節(jié)課我們提出了雞兔同籠問題:(投影)一個(gè)農(nóng)民有若干只雞和兔子,它們共有50個(gè)頭和140只腳,問雞和兔子各有多少?設(shè)農(nóng)民有x只雞,y只兔,則得到二元一次方程組

          對于列出的這個(gè)二元一次方程組,我們?nèi)绾吻蟪鏊慕饽兀?學(xué)生思考)教師引導(dǎo)并提出問題:若設(shè)有x只雞,則兔子就有(50-x)只,依題意,得2x+4(50-x)= 140從而可解得,x=30,50-x=20,使問題得解.

          問題:從上面一元一次方程解法過程中,你能得出二元一次方程組串問題,進(jìn)一步引導(dǎo)學(xué)生找出它的解法) (1)在一元一次方程解法中,列方程時(shí)所用的等量關(guān)系是什么?(2)該等量關(guān)系中,雞數(shù)與兔子數(shù)的表達(dá)式分別含有幾個(gè)未知數(shù)?(3)前述方程組中方程②所表示的等量關(guān)系與用一元一次方程表示的等量關(guān)系是否相同?

          (4)能否由方程組中的方程②求解該問題呢?

          (5)怎樣使方程②中含有的兩個(gè)未知數(shù)變?yōu)橹缓幸粋(gè)未知數(shù)呢?(以上問題,要求學(xué)生獨(dú)立思考,想出消元的方法)結(jié)合學(xué)生的回答,教師作出講解.

          由方程①可得y=50-x③,即兔子數(shù)y用雞數(shù)x的代數(shù)式50-x表示,由于方程②中的y與方程①中的y都表示兔子的只數(shù),故可以把方程②中的y用(50-x)來代換,即把方程③代入方程②中,得2x+4(50-x)=140,解得x=30.

          將x=30代入方程③,得y=20.

          即雞有30只,兔有20只.

          本節(jié)課,我們來學(xué)習(xí)二元一次方程組的解法.

          二、講授新課例1解方程組

          分析:若此方程組有解,則這兩個(gè)方程中同一個(gè)未知數(shù)就應(yīng)取相同的值.因此,方程②中的y就可用方程①中的表示y的代數(shù)式來代替.解:把①代入②,得3x+2(1-x)=5,3x+2-2x=5,所以x=3.把x=3代入①,得y=-2.

          (本題應(yīng)以教師講解為主,并板書,同時(shí)教師在最后應(yīng)提醒學(xué)生,與解一元一次方程一樣,要判斷運(yùn)算的.結(jié)果是否正確,需檢驗(yàn).其方法是將所求得的一對未知數(shù)的值分別代入原方程組里的每一個(gè)方程中,看看方程的左、右兩邊是否相等.檢驗(yàn)可以口算,也可以在草稿紙上驗(yàn)算)教師講解完例1后,結(jié)合板書,就本題解法及步驟提出以下問題:1.方程①代入哪一個(gè)方程?其目的是什么?2.為什么能代入?

          3.只求出一個(gè)未知數(shù)的值,方程組解完了嗎?

          4.把已求出的未知數(shù)的值,代入哪個(gè)方程來求另一個(gè)未知數(shù)的值較簡便?在學(xué)生回答完上述問題的基礎(chǔ)上,教師指出:這種通過代入消去一個(gè)未知數(shù),使二元方程轉(zhuǎn)化為一元方程,從而方程組得以求解的方法叫做代入消元法,簡稱代入法.例2解方程組

          分析:例1是用y=1-x直接代入②的.例2的兩個(gè)方程都不具備這樣的條件(即用含有一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)),所以不能直接代入.為此,我們需要想辦法創(chuàng)造條件,把一個(gè)方程變形為用含x的代數(shù)式表示y(或含y的代數(shù)式表示x).那么選用哪個(gè)方程變形較簡便呢?通過觀察,發(fā)現(xiàn)方程②中x的系數(shù)為1,因此,可先將方程②變形,用含有y的代數(shù)式表示x,再代入方程①求解.解:由②,得x=8-3y,③把③代入①,得(問:能否代入②中?)

          2(8-3y)+5y=-21,-y=-37,所以y=37.

          (問:本題解完了嗎?把y=37代入哪個(gè)方程求x較簡單?)把y=37代入③,得x= 8-3×37,所以x=-103.

          (本題可由一名學(xué)生口述,教師板書完成)

          三、課堂練習(xí)(投影)用代入法解下列方程組:

          四、師生共同小結(jié)

          在與學(xué)生共同回顧了本節(jié)課所學(xué)內(nèi)容的基礎(chǔ)上,教師著重指出,因?yàn)榉匠探M在有解的前提下,兩個(gè)方程中同一個(gè)未知數(shù)所表示的是同一個(gè)數(shù)值,故可以用它的等量代換,即使“代入”成為可能.而代入的目的就是為了消元,使二元方程轉(zhuǎn)化為一元方程,從而使問題最終得到解決.

          五、作業(yè)

          用代入法解下列方程組:

          5.x+3y=3x+2y=7.

          一次方程組的應(yīng)用教案 篇3

          1學(xué)情分析

          本節(jié)內(nèi)容是在學(xué)生掌握了二元一次方程組的解法,能列二元一次方程組解較簡單的應(yīng)用題的基礎(chǔ)上安排的,其中的“牛飼料問題”“種植計(jì)劃問”“成本與產(chǎn)出問題”是具有一定綜合性的問題,涉及到估算與精確計(jì)算的比較、開放地探索設(shè)計(jì)方案、根據(jù)圖表信息列方程組等問題形式。由于本節(jié)需要探究的問題比較復(fù)雜,所以在教學(xué)的過程中,一方面需要設(shè)置部分臺(tái)階減小坡度、分散難點(diǎn),另一方面需要用一些具體的方法引導(dǎo)學(xué)生學(xué)會(huì)分析和表達(dá),還要留給學(xué)生充足的思考、交流、整理、反思的時(shí)間。在解決問題的過程中,使學(xué)生體會(huì)到方程組應(yīng)用的廣泛性與有效性,提高分析解決問題的能力。

          根據(jù)我校農(nóng)村學(xué)校學(xué)生的具體學(xué)習(xí)情況和認(rèn)知特點(diǎn),本節(jié)內(nèi)容設(shè)計(jì)為3個(gè)教學(xué)課時(shí),第一課時(shí)主要引導(dǎo)學(xué)生探索列方程組解應(yīng)用題的步驟和基本思路;第二課時(shí)主要進(jìn)行綜合性應(yīng)用問題的探索;第三課時(shí)主要進(jìn)行思維拓展和鞏固提高。

          2教學(xué)目標(biāo)

         。ㄒ唬┲R(shí)與技能

          1、會(huì)用二元一次方程組解決生產(chǎn)生活中的實(shí)際問題;

          2、用方程組的數(shù)學(xué)模型刻畫現(xiàn)實(shí)生活中的實(shí)際問題。

         。ǘ┻^程與方法

          1、培養(yǎng)學(xué)生應(yīng)用方程解決實(shí)際問題的意識(shí)和應(yīng)用數(shù)學(xué)的能力;

          2、將解方程組的技能訓(xùn)練與解決實(shí)際問題融為一體,進(jìn)一步提高解方程組的技能。

         。ㄈ┣楦袘B(tài)度與價(jià)值觀

          1、體會(huì)方程組是刻畫現(xiàn)實(shí)世界的有效模型,培養(yǎng)應(yīng)用數(shù)學(xué)的意識(shí)。

          2、在用方程組解決實(shí)際問題的過程中,體驗(yàn)數(shù)學(xué)的實(shí)用性,提高學(xué)習(xí)數(shù)學(xué)的興趣。

          3、結(jié)合實(shí)際問題,培養(yǎng)學(xué)生關(guān)注生產(chǎn)勞動(dòng)、熱愛生活的意識(shí),讓學(xué)生重視數(shù)學(xué)知識(shí)與實(shí)際生活的聯(lián)系。

          3重點(diǎn)難點(diǎn)

          教學(xué)重點(diǎn):根據(jù)題意找出等量關(guān)系,列二元一次方程組。

          教學(xué)難點(diǎn):正確找出問題中的`兩組等量關(guān)系。

          4教學(xué)過程

          4.1第一學(xué)時(shí)

          教學(xué)活動(dòng)

          活動(dòng)1【導(dǎo)入】活動(dòng)一:逛公園。

          公園一角三個(gè)學(xué)生的對話:甲:昨天,我們一家8個(gè)人去公園玩,買門票花了34元。乙:哦,那你們家去了幾個(gè)大人?幾個(gè)小孩呢?丙:真笨,自已不會(huì)算嗎?成人票5元每人,小孩3元每人啊!

          (設(shè)計(jì)說明:利用學(xué)生熟悉的公園購票設(shè)計(jì)一個(gè)簡單的問題,在解決這個(gè)問題的同時(shí),使學(xué)生熟悉列方程解應(yīng)用題的一般步驟,以及解二元一次方程組常用的方法,為下一步的探究做好準(zhǔn)備。)

          解:設(shè)大人為x人,小孩為y人,依題意得

          x+y=8 ①

          5x+3y=34 ②

          解得

          x=5

          y=3

          答:大人5人,小孩3人。

          注:對列出的不同形式的方程組及其解法作簡要的比較說明,有意識(shí)的引導(dǎo)學(xué)生體會(huì)解決問題方法的多樣性及方法選擇的重要性。

          (教學(xué)說明:以此活動(dòng)創(chuàng)設(shè)一個(gè)學(xué)生感興趣的情景,教師提出問題,學(xué)生嘗試解答,兩名學(xué)生板演,結(jié)合板演訂正,提醒學(xué)生注意選擇簡單的方法解方程組,避免重列輕解現(xiàn)象的發(fā)生。)

          活動(dòng)2【講授】活動(dòng)二:參觀農(nóng)場——合作探究。

          養(yǎng)牛場原有30只大牛和15只小牛,1天約需要飼料675kg;一周后又購進(jìn)12只大牛和5只小牛,這時(shí)1天約需要飼料940kg。飼養(yǎng)員李大叔估計(jì)平均每只大牛1天約需飼料18至20kg,每只小牛1天約需要飼料7至8kg。請你通過計(jì)算檢驗(yàn)李大叔的估計(jì)是否正確?

          問題1:怎樣判斷李大叔的估計(jì)是否正確?

         。ㄔO(shè)計(jì)說明:引導(dǎo)學(xué)生探尋解題思路,并對各種方法進(jìn)行比較,方法一主要是要估算的運(yùn)用,而方法二是方程思想的應(yīng)用學(xué)生在比較探究后發(fā)現(xiàn)用方法二較簡便,思路明確之后進(jìn)一步考慮具體解答問題)

          判斷李大叔的估計(jì)是否正確的方法有兩種:

          1、先假設(shè)李大叔的估計(jì)正確,再根據(jù)問題中給定的數(shù)量關(guān)系來檢驗(yàn)。

          2、根據(jù)問題中給定的數(shù)量關(guān)系求出平均每只母牛和每只小牛1天各約需用飼料量,再來判斷李大叔的估計(jì)是否正確。

         。ń虒W(xué)說明:教師提出問題,讓學(xué)生討論交流,在此過程中可以逐步理解題意,找到解決問題的方法)

          問題2 思考:題目中有哪些已知量?哪些未知量?等量關(guān)系有哪些?

         。ㄔO(shè)計(jì)說明:利用思考中的問題,引導(dǎo)學(xué)生分析題目中的數(shù)量關(guān)系,逐步將學(xué)生的思維引向問題的核心,從而順利解決問題。)

          分析:本題的等量關(guān)系是

         。1)30只母牛和15只小牛一天需用飼料為675kg

         。2)(30+12)只母牛和(15+5)只小牛一天需用飼料為940kg

          (教學(xué)說明:教師先讓學(xué)生自己閱讀思考,然后同學(xué)之間互相交流,最后師生共同得出結(jié)論)

          問題3 如何解這個(gè)應(yīng)用題?

          (設(shè)計(jì)說明:在學(xué)生正確理解題意,把握題中數(shù)量關(guān)系的基礎(chǔ)上寫出解答過程,一方面可以進(jìn)一步梳理思路,熟悉解答過程,另一方面把想和做統(tǒng)一起來,在做的過程中發(fā)展計(jì)算、表達(dá)等多種能力。)

          解:設(shè)平均每只母牛和每只小牛1天各需用飼料為xkg和ykg根據(jù)題意列方程組,得

          30x+15y=675 ①

         。30+12)x+(15+5)y=940 ②

          化簡得

          2x+y=45

          2.1x+y=47

          解這個(gè)方程組得

          x=20

          y=5

          答:每只母牛和每只小牛1天各需用飼料為20kg和5kg,因此,飼養(yǎng)員李大叔對大牛的食量估計(jì)較準(zhǔn)確,對小牛的食量估計(jì)偏高。

         。ń虒W(xué)說明:學(xué)生在寫解答過程時(shí),教師重點(diǎn)關(guān)注學(xué)習(xí)有困難的學(xué)生,同時(shí)平時(shí)做事不認(rèn)真規(guī)范的同學(xué)也是重點(diǎn)關(guān)注對象。完成之后針對出線的問題及時(shí)點(diǎn)評,使學(xué)生形成良好的學(xué)習(xí)習(xí)慣。)

          問題3 總結(jié):列方程組解應(yīng)用題的一般步驟及需要注意的問題。

         。ㄔO(shè)計(jì)說明:問題解決之后及時(shí)回顧反思,能更清晰的發(fā)現(xiàn)存在的問題及需要改進(jìn)的地方,便于學(xué)生自查、自悟,找到適合自己的學(xué)習(xí)方法)

          審:弄清題目中的數(shù)量關(guān)系;

          設(shè):設(shè)出兩個(gè)未知數(shù);

          列:分析題意,找出兩個(gè)等量關(guān)系,根據(jù)等量關(guān)系列出方程組;

          解:解出方程組,求出未知數(shù)的值;

          驗(yàn):檢驗(yàn)求得的值是否正確和符合實(shí)際情形;

          答:寫出答案(有時(shí)要分別作答)。

          活動(dòng)3【練習(xí)】活動(dòng)三:工廠鍛煉——知識(shí)應(yīng)用。

         。ㄔO(shè)計(jì)說明:通過不同形式的情境設(shè)置,從不同的角度幫助學(xué)生進(jìn)一步加深對列方程組解決應(yīng)用問題的認(rèn)識(shí),形成初步技能。針對學(xué)習(xí)后進(jìn)的學(xué)生降低了解方程組的難度,有利于這部分學(xué)生把主要精力用于學(xué)習(xí)列方程組的方法步驟上。)

          1、長18米的鋼材,要鋸成10段,而每段的長只能取“1米或2米”兩種型號之一,小明估計(jì)2米的有3段,你們認(rèn)為他估計(jì)的是否正確?為什么呢?

          那2米和1米的各應(yīng)多少段?

          解:設(shè)2米的有x段,1米的有y段,根據(jù)題意,得

          x+y=10 ①

          2x+y=18 ②

          解得

          x=8

          y=2

          答:小明估計(jì)不準(zhǔn)確,2米長的8段,1米長的2段。

          活動(dòng)4【練習(xí)】活動(dòng)四:大顯身手——拓展提高。

         。ㄕf明:通過從不同的角度幫助學(xué)生進(jìn)一步加深對列方程組解決應(yīng)用問題的認(rèn)識(shí),鞏固初步形成的技能。要求學(xué)生自主解決,以此檢驗(yàn)學(xué)生掌握情況和本堂課的教學(xué)效果,為第二課時(shí)教學(xué)奠定基礎(chǔ)。)

          有大小兩種貨車,2輛大車與3輛小車一次可以運(yùn)貨15.50噸,5輛大車與6輛小車一次可以運(yùn)貨35噸。求:3輛大車與5輛小車一次可以運(yùn)貨多少噸?

          活動(dòng)5【活動(dòng)】課堂小結(jié)

          1、本節(jié)課你學(xué)習(xí)了什么?(利用列二元一次方程組解決實(shí)際問題。)

          2、列二元一次方程組解決實(shí)際問題的主要步驟是什么?(審、設(shè)、列、解、驗(yàn)、答。)

          3、列二元一次方程組解決實(shí)際問題應(yīng)注意哪些問題?

         。ǎ保┱J(rèn)真審題,用數(shù)學(xué)語言或式子表示題目中的數(shù)量關(guān)系。

         。ǎ玻┙獬龇匠探M時(shí)要選擇適當(dāng)?shù)姆椒,運(yùn)算速度要快,準(zhǔn)確度要高。

         。ǎ常┮匆髮懗龃鸢。

          活動(dòng)6【導(dǎo)入】布置作業(yè)

          課外作業(yè):p101復(fù)習(xí)鞏固第1題、第2題、第3題。

          活動(dòng)7【活動(dòng)】課后反思

          在這節(jié)課之前的學(xué)習(xí)中,學(xué)生已經(jīng)了解了一些用方程組表示問題中的條件及解方程組的相關(guān)知識(shí),而且探究了用方程組解決具有現(xiàn)實(shí)意義的實(shí)際問題。因此,這一節(jié)課共安排了四個(gè)貼近實(shí)際問題的情境活動(dòng):活動(dòng)一:逛公園,提起學(xué)生興趣導(dǎo)入實(shí)際問題,數(shù)量關(guān)系較為簡單;活動(dòng)一:參觀農(nóng)場,幫助李大叔計(jì)算驗(yàn)證,數(shù)量關(guān)系的難度有所提高,活動(dòng)中總結(jié)列二元一次方程組解決實(shí)際問題的主要步驟,同時(shí)含有關(guān)注農(nóng)業(yè)生產(chǎn)的思想;活動(dòng)三:工廠鍛煉——知識(shí)應(yīng)用和活動(dòng)四:大顯身手——拓展提高。主要通過從不同的角度幫助學(xué)生進(jìn)一步加深對列方程組解決應(yīng)用問題的認(rèn)識(shí),鞏固初步形成的技能。

          這節(jié)課更為關(guān)注建立二元一次方程組數(shù)學(xué)模型的“探索”過程。它不僅為解決實(shí)際問題提供了重要的策略,而且為數(shù)學(xué)交流提供了有效的途徑,它的模型化的方法,合理優(yōu)化的思想意識(shí)為學(xué)生解決實(shí)際問題提供了理論上的科學(xué)依據(jù)。所以我覺得設(shè)計(jì)此課的重點(diǎn)應(yīng)該是使學(xué)生在探究如何用二元一次方程組解決實(shí)際問題的過程中,進(jìn)一步提高分析問題中的數(shù)量關(guān)系、設(shè)未知數(shù)、列方程組并解方程組、檢驗(yàn)結(jié)果的合理性等能力,感受建立數(shù)學(xué)模型的作用。教學(xué)中我應(yīng)該根據(jù)學(xué)生的實(shí)際,選取學(xué)生熟悉的背景,讓學(xué)生體會(huì)數(shù)學(xué)建模的思想。在教學(xué)中應(yīng)發(fā)揮自主學(xué)習(xí)的積極性,引導(dǎo)學(xué)生先獨(dú)立探究,再進(jìn)行合作交流。

          在此教學(xué)過程中,要熟練掌握多媒體課件的使用流程,充分發(fā)揮圖片資料創(chuàng)設(shè)情境和提高學(xué)生學(xué)習(xí)興趣的作用。

          一次方程組的應(yīng)用教案 篇4

          教學(xué)目標(biāo):

          1使學(xué)生會(huì)借助二元一次方程組解決簡單的實(shí)際問題,讓學(xué)生再次體會(huì)二元一次方程組與現(xiàn)實(shí)生活的聯(lián)系和作用

          2通過應(yīng)用題教學(xué)使學(xué)生進(jìn)一步使用代數(shù)中的方程去反映現(xiàn)實(shí)世界中等量關(guān)系,體會(huì)代數(shù)方法的優(yōu)越性

          3體會(huì)列方程組比列一元一次方程容易

          4進(jìn)一步培養(yǎng)學(xué)生化實(shí)際問題為數(shù)學(xué)問題的能力和分析問題,解決問題的能力

          重點(diǎn)與難點(diǎn):

          重點(diǎn):能根據(jù)題意列二元一次方程組;根據(jù)題意找出等量關(guān)系;

          難點(diǎn):正確發(fā)找出問題中的兩個(gè)等量關(guān)系

          課前自主學(xué)習(xí)

          1.列方程組解應(yīng)用題是把“未知”轉(zhuǎn)化為“已知”的重要方法,它的關(guān)鍵是把已知量和未知量聯(lián)系起來,找出題目中的`()

          2.一般來說,有幾個(gè)未知量就必須列幾個(gè)方程,所列方程必須滿足:

          (1)方程兩邊表示的是()量

          (2)同類量的單位要()

          (3)方程兩邊的數(shù)值要相符。

          3.列方程組解應(yīng)用題要注意檢驗(yàn)和作答,檢驗(yàn)不僅要求所得的解是否( ),更重要的是要檢驗(yàn)所求得的結(jié)果是否( )

          4.一個(gè)籠中裝有雞兔若干只,從上面看共42個(gè)頭,從下面看共有132只腳,則雞有( ),兔有( )

          新課探究

          看一看

          問題:

          1題中有哪些已知量?哪些未知量?

          2題中等量關(guān)系有哪些?

          3如何解這個(gè)應(yīng)用題?

          本題的等量關(guān)系是(1)()

          (2)()

          解:設(shè)平均每只母牛和每只小牛1天各需用飼料為xkg和ykg

          根據(jù)題意列方程,得

          解這個(gè)方程組得

          答:每只母牛和每只小牛1天各需用飼料為( )和( ),飼料員李大叔估計(jì)每天母牛需用飼料18—20千克,每只小牛一天需用7到8千克與計(jì)算()出入。(“有”或“沒有”)

          練一練:

          1、某所中學(xué)現(xiàn)在有學(xué)生4200人,計(jì)劃一年后初中在樣生增加8%,高中在校生增加11%,這樣全校學(xué)生將增加10%,這所學(xué),F(xiàn)在的初中在校生和高中在校生人數(shù)各是多少人?

          2、有大小兩輛貨車,兩輛大車與3輛小車一次可以支貨15。50噸,5輛大車與6輛小車一次可以支貨35噸,求3輛大車與5輛小車一次可以運(yùn)貨多少噸?

          3、某工廠第一車間比第二車間人數(shù)的少30人,如果從第二車間調(diào)出10人到第一車間,則第一車間的人數(shù)是第二車間的,問這兩車間原有多少人?

          4、某運(yùn)輸隊(duì)送一批貨物,計(jì)劃20天完成,實(shí)際每天多運(yùn)送5噸,結(jié)果不但提前2天完成任務(wù)并多運(yùn)了10噸,求這批貨物有多少噸?原計(jì)劃每天運(yùn)輸多少噸?

          小結(jié)

          用方程組解應(yīng)用題的一般步驟是什么?

          8.3實(shí)際問題與二元一次方程組(2)

          教學(xué)目標(biāo):

          1、經(jīng)歷用方程組解決實(shí)際問題的過程,體會(huì)方程組是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型;

          2、能夠找出實(shí)際問題中的已知數(shù)和未知數(shù),分析它們之間的數(shù)量關(guān)系,列出方程組;

          3、學(xué)會(huì)開放性地尋求設(shè)計(jì)方案,培養(yǎng)分析問題,解決問題的能力

          重點(diǎn)與難點(diǎn):

          重點(diǎn):能根據(jù)題意列二元一次方程組;根據(jù)題意找出等量關(guān)系;

          難點(diǎn):正確發(fā)找出問題中的兩個(gè)等量關(guān)系

          課前自主學(xué)習(xí)

          1.甲乙兩人的年收入之比為4:3,支出之比為8:5,一年間兩人各存了5000元(兩人剩余的錢都存入了銀行),則甲乙兩人的年收入分別為()元和()元。

          2.在一堆球中,籃球與排球之比為贊助單位又送來籃球隊(duì)10個(gè)排球10個(gè),這時(shí)籃球與排球的數(shù)量之比為27:40,則原有籃球()個(gè),排球()個(gè)。

          3.現(xiàn)在長為18米的鋼材,要據(jù)成10段,每段長只能為1米或2米,則這個(gè)問題中的等量關(guān)系是(1)1米的段數(shù)+()=10(2)1米的鋼材總長+()=18

          一次方程組的應(yīng)用教案 篇5

          知識(shí)與技能

          (1) 初步理解二元一次方程和一次函數(shù)的關(guān)系;

          (2) 掌握二元一 次方程組和對應(yīng)的兩條直線之間的 關(guān)系;

          (3) 掌握二元一次方程組的圖像解法.

          過程與方法

          (1) 教材以“問題串”的形式,揭示方程與函數(shù)間的相互轉(zhuǎn)化,使學(xué)生在自主探索中學(xué)會(huì)不同數(shù)學(xué)知識(shí)間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法;

          (2) 通過“做一做”引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識(shí)和能力.

          情感與態(tài)度

          (1) 在探究二元一次方程和一次函數(shù)的對應(yīng)關(guān)系中,在體會(huì)近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神.

          (2) 在經(jīng)歷同一數(shù)學(xué)知識(shí)可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和變式能力.

          教學(xué)重點(diǎn)

          (1)二元一次方程和一次函數(shù)的關(guān)系;

          (2)二元一次方程組和對應(yīng)的兩條直線的關(guān)系.

          教學(xué)難點(diǎn)

          數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識(shí).

          教學(xué)準(zhǔn)備

          教具:多媒體課件、三角板.

          學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.

          教學(xué)過程

          第一環(huán)節(jié): 設(shè)置問題情境,啟發(fā)引導(dǎo)(5分鐘,學(xué)生回答問題回顧知識(shí))

          內(nèi)容:

          1.方程x+y=5的解有多少個(gè)? 是這個(gè)方程的解嗎?

          2.點(diǎn)(0,5),(5,0),(2,3)在一次函數(shù)y= 的.圖像上嗎?

          3.在一次函數(shù)y= 的圖像上任取一點(diǎn),它的坐標(biāo)適合方程x+y=5嗎?

          4.以方程x+y=5的解為坐標(biāo)的所有點(diǎn)組成的圖像與一次函數(shù)y= 的圖像相同嗎?

          由此得到本節(jié)課的第一個(gè)知識(shí)點(diǎn):

          二元一次方程和一次函數(shù)的圖像有如下關(guān)系:

          (1) 以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;

          (2) 一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程 .

          第二環(huán)節(jié) 自主探索方程組的解與圖像之間的關(guān)系(10分鐘,教師引導(dǎo)學(xué) 生解決)

          內(nèi)容:

          1.解方程組

          2.上述方程移項(xiàng)變形轉(zhuǎn)化為兩個(gè)一次函數(shù)y= 和y=2x ,在同一直角坐標(biāo)系內(nèi)分別作出這兩個(gè)函數(shù) 的圖像.

          3.方程組的解和這兩個(gè)函數(shù)的圖像的交點(diǎn)坐標(biāo)有什么關(guān)系?由此得到本節(jié)課的第2個(gè)知識(shí)點(diǎn):二元一次方程和相應(yīng)的兩條直線的關(guān)系以及二元一次方程組的圖像解法;

          (1) 求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點(diǎn)的橫縱坐標(biāo);

          (2) 求兩條直線的交點(diǎn)坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解.

          (3) 解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.

          注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組.

          第三環(huán)節(jié) 典型例題 (10分鐘,學(xué)生獨(dú)立解決)

          探究方程與函數(shù)的相互轉(zhuǎn)化

          內(nèi)容:

          例1 用作圖像的方法解方程組

          例2 如圖,直線 與 的交點(diǎn)坐標(biāo)是 .

          第四環(huán)節(jié) 反饋練習(xí)(10分鐘,學(xué)生解決全班交流)

          內(nèi)容:

          1.已知一次函數(shù) 與 的圖像的交點(diǎn)為 ,則 .

          2.已知一次函數(shù) 與 的圖像都經(jīng)過點(diǎn)A(—2, 0),且與 軸分別交于B,C兩點(diǎn),則 的面積為.

          (A)4 (B)5 (C)6 (D)7

          3.求兩條直線 與 和 軸所圍成的三角形面積.

          4.如圖,兩條直線 與 的交點(diǎn)坐標(biāo)可以看作哪個(gè)方程組的解?

          第五環(huán)節(jié) 課堂小結(jié)(5分鐘,師生共同總結(jié))

          內(nèi)容:以“問題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識(shí)、方法:

          1.二元一次方程和一 次函數(shù)的圖像的關(guān)系;

          (1) 以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;

          (2) 一次函數(shù)圖像上 的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程.

          2.方程組和對應(yīng)的兩條直線的關(guān)系:

          (1) 方程組的解是對應(yīng)的兩條直線的交點(diǎn)坐標(biāo);

          (2) 兩條直線的交 點(diǎn)坐標(biāo)是對應(yīng)的方程組的解;

          3.解二元一次 方程組的方法有3種:

          (1)代入消元法;

          (2)加減消元法;

          (3)圖像法. 要強(qiáng)調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解.

          第六環(huán)節(jié) 作業(yè)布置

          習(xí)題7.7A組(優(yōu)等生)1、 2、3 B組(中等生)1、2 C組1、2

          一次方程組的應(yīng)用教案 篇6

          知識(shí)要點(diǎn)

          1、二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是一次的整式方程叫做~

          2、二元一次方程的解:適合二元一次方程的一組未知數(shù)的值叫做這個(gè)二元一次方程的一個(gè)解;

          3、二元一次方程組:由幾個(gè)一次方程組成并含有兩個(gè)未知數(shù)的方程組叫做二元一次方程組

          4、二元一次方程組的解:適合二元一次方程組里各個(gè)方程的一對未知數(shù)的值,叫做這個(gè)方程組里各個(gè)方程的公共解,也叫做這個(gè)方程組的解(注意:①書寫方程組的解時(shí),必需用“”把各個(gè)未知數(shù)的值連在一起,即寫成的形式;②一元方程的解也叫做方程的根,但是方程組的解只能叫解,不能叫根)

          5、解方程組:求出方程組的解或確定方程組沒有解的過程叫做解方程組

          6、解二元一次方程組的基本方法是代入消元法和加減消元法(簡稱代入法和加減法)

          (1)代入法解題步驟:把方程組里的一個(gè)方程變形,用含有一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù);把這個(gè)代數(shù)式代替另一個(gè)方程中相應(yīng)的未知數(shù),得到一個(gè)一元一次方程,可先求出一個(gè)未知數(shù)的值;把求得的這個(gè)未知數(shù)的值代入第一步所得的式子中,可求得另一個(gè)未知數(shù)的值,這樣就得到了方程的解

         。2)加減法解題步驟:把方程組里一個(gè)(或兩個(gè))方程的兩邊都乘以適當(dāng)?shù)臄?shù),使兩個(gè)方程里的某一個(gè)未知數(shù)的系數(shù)的絕對值相等;把所得到的`兩個(gè)方程的兩邊分別相加(或相減),消去一個(gè)未知數(shù),得到含另一個(gè)未知數(shù)的一元一次方程(以下步驟與代入法相同)

          一、例題精講

          分別用代入法和加減法解方程組

          解:代入法:由方程②得:③

          將方程③代入方程①得:

          解得x=2

          將x=2代入方程②得:4-3y=1

          解得y=1

          所以方程組的解為

          加減法:

          例2.從少先隊(duì)夏令營到學(xué)校,先下山再走平路,一少先隊(duì)員騎自行車以每小時(shí)12公里的速度下山,以每小時(shí)9公里的速度通過平路,到學(xué)校共用了55分鐘,回來時(shí),通過平路速度不變,但以每小時(shí)6公里的速度上山,回到營地共花去了1小時(shí)10分鐘,問夏令營到學(xué)校有多少公里?

          分析:路程分為兩段,平路和坡路,來回路程不變,只是上山和下山的轉(zhuǎn)變導(dǎo)致時(shí)間的不同,所以設(shè)平路長為x公里,坡路長為y公里,表示時(shí)間,利用兩個(gè)不同的過程列兩個(gè)方程,組成方程組

          解:設(shè)平路長為x公里,坡路長為y公里

          依題意列方程組得:

          解這個(gè)方程組得:

          經(jīng)檢驗(yàn),符合題意

          x+y=9

          答:夏令營到學(xué)校有9公里二、課堂小結(jié):

          回顧本章內(nèi)容,總結(jié)二元一次方程組的解法和應(yīng)用。

          三、作業(yè)布置:

          P25A組習(xí)題

          一次方程組的應(yīng)用教案 篇7

          一、創(chuàng)設(shè)問題情境,復(fù)習(xí)舊知識(shí),激發(fā)學(xué)生興趣,引出本節(jié)要研究的內(nèi)容.

          活動(dòng)1 紙幣問題

          小明手頭有12張面額分別是1元、2元、5元的紙幣,共計(jì)22元,其中1元紙幣的數(shù)量是2元紙幣數(shù)量的4倍.求1元、2元、5元的紙幣各多少張?

          學(xué)生活動(dòng)設(shè)計(jì):

          設(shè)1元2元分別為x張、y張,如何列方程組?用什么消元法比較好呢?

          只設(shè)一個(gè)未知數(shù),用一元一次方程能否求解?(能,但不方便。對未知量較多的問題,所設(shè)的未知數(shù)越少,方程往往越難列。其實(shí)題中有三個(gè)未知量我們就設(shè)三個(gè)未知數(shù)來解決。)

          自然想法是,設(shè)1元、2元、5元的紙幣分別是x張、y張、z張,根據(jù)題意可以得到下列三個(gè)方程:

          x+y+z=12,

          x+2y+5z=22,

          x=4y.

          這個(gè)問題的解必須同時(shí)滿足上面三個(gè)條件,因此可以把三個(gè)方程合在一起寫成

          教師活動(dòng)設(shè)計(jì):

          在學(xué)生活動(dòng)的基礎(chǔ)上,適時(shí)給出三元一次方程組的`概念,并激發(fā)學(xué)生探究其解法的熱情.

          板書:三元一次方程組:含有三個(gè)相同的未知數(shù),每個(gè)方程中含未知數(shù)的項(xiàng)的次數(shù)都是1,并且一共有三個(gè)方程,像這樣的方程組叫做三元一次方程組.

          活動(dòng)2 討論如何解三元一次方程組

          我們知道二元一次方程組可以利用代入法或加減法消去一個(gè)未知數(shù),化成一元一次方程求解.那么能否用同樣的思路,用代入法或加減法消去三元一次方程組的一個(gè)或兩個(gè)未知數(shù),把它轉(zhuǎn)化成二元一次方程組或一元一次方程呢?觀察方程組:

          ①

         、

          ③

          仿照前面學(xué)過的代入法,可以把③分別代入①②,得到兩個(gè)只含y,z的方程:

          4y+y+z=12

          4y+2y+5z=22

          即

          得到二元一次方程組后就不難求出y和z的值,進(jìn)而可以求出x了.(問題:同學(xué)們還有不同的消元法嗎?比較一下哪種方法較好。)

          總結(jié):

          解三元一次方程組的基本思路是:通過“代入”或“加減”進(jìn)行消元,把“三元”轉(zhuǎn)化為“二元”,使解三元一次方程組轉(zhuǎn)化為解二元一次方程組,進(jìn)而再轉(zhuǎn)化為解一元一次方程.即

          板書:

          三元一次方程組

          二元一次方程組

          一元一次方程

          消元(代入、加減) 消元

          三元變二元最佳方法:

         、

          ②

         、

          1、有表達(dá)式的用代入法;2、缺某元,消某元;3、相同未知數(shù)的系數(shù)相同或相反或整數(shù)倍的用加減消元法。例分析:p114習(xí)題1

          二、主體探究,培養(yǎng)學(xué)生解決問題的能力.

          例題分析:解三元一次方程組

         、

         、

         、

          分析:方程①只含x,z,因此可以由②③消去y,得到一個(gè)只含x,z的方程,與方程①組成一個(gè)二元一次方程組.

          解:②×3+③,得

          11x+10z=35 ④

         、倥c④組成方程組

          解這個(gè)方程組,得

          把x=5,z=-2代入②得

          因此三元一次方程組的解為

          板書:(可略)解三元一次方程步驟、格式:1)、三元變二元(有的可直接變一元),利用代入消元法或加減消元法或其他簡便的方法,把三元變二元的方程組;2)、解這個(gè)二元一次方程組,求得兩個(gè)未知數(shù)的值;3)、將這兩個(gè)未知數(shù)的值代入原方程組中較簡單的一個(gè)方程,求出第三個(gè)未知數(shù)的值;4)、把這三個(gè)數(shù)寫在一起就是所求的三元一次方程組的解。

          一次方程組的應(yīng)用教案 篇8

          二元一次方程組是從實(shí)際生活中抽象出來的數(shù)學(xué)模型,它是解決實(shí)際問題的有效途徑,更是今后學(xué)習(xí)的重要基礎(chǔ).它是在一元一次方程的基礎(chǔ)上來進(jìn)一步研究末知量之問的關(guān)系的,教材通過實(shí)例引入方程組的概念,同時(shí)引入方程組解的概念,并探索二元一次方程組的解法,具體研究二元一次方程組的實(shí)際應(yīng)用.

          本章學(xué)習(xí)重難點(diǎn)

          【本章重點(diǎn)】會(huì)解二元一次方程組,能夠根據(jù)具體問題中的數(shù)量關(guān)系列出方程組.

          【本章難點(diǎn)】列方程組解應(yīng)用性的實(shí)際問題.

          【學(xué)習(xí)本章應(yīng)注意的問題】

          在復(fù)習(xí)解一元一次方程時(shí),明確一元一次方程化簡變形的原理,類比學(xué)習(xí)二元一次方程組、三元一次方程組的解法,同時(shí)在學(xué)習(xí)二元一次方程組、三元一次方程組的解法時(shí),要認(rèn)真體會(huì)消元轉(zhuǎn)化的思想原理,在學(xué)習(xí)用方程組解決突際問題時(shí),要積極探究,多多思考,正確設(shè)未知數(shù),列出恰當(dāng)?shù)姆匠探M,從而解決實(shí)際問題.

          中考透視

          在考查基礎(chǔ)知識(shí)、基本能力的題目中,單獨(dú)知識(shí)點(diǎn)考查類題目及多知識(shí)點(diǎn)綜合考查類題目經(jīng)常出現(xiàn),在實(shí)際應(yīng)用題及開放題中大量出現(xiàn).所以在學(xué)習(xí)本章內(nèi)容的過程中一定要結(jié)合其他相應(yīng)的知識(shí)與方法,本章是中考的重要考點(diǎn)之一,圍繞簡單的二元一次方程組的解法命題,能根據(jù)具體問題的數(shù)量關(guān)系列出二元一次方程組,體會(huì)方程是描述現(xiàn)實(shí)世界的一個(gè)有效模型,并根據(jù)具體問題的實(shí)際意義用觀察、體驗(yàn)等手段檢驗(yàn)結(jié)果是否合理.考試題型以選擇題、填空題、應(yīng)用題、開放題以及綜合題為主,高、中、低檔難度的題目均有出現(xiàn),占4~7分.

          知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)圖

          專題總結(jié)及應(yīng)用

          一、知識(shí)性專題

          專題1 運(yùn)用某些概念列方程求解

          【專題解讀】在學(xué)習(xí)過程中,我們常常會(huì)遇到二元一次方程的未知數(shù)的指數(shù)是一個(gè)字母或關(guān)于字母的代數(shù)式,讓我們求字母的值,這時(shí)巧用定義,可簡便地解決這類問題

          例1 若 =0,是關(guān)于x,y的二元一次方程,則a=,b=.

          分析 依題意,得 解得

          答案:

          【解題策略】準(zhǔn)確地掌握二元一次方程的定義是解此題的關(guān)鍵.

          專題2 列方程組解決實(shí)際問題

          【專題解讀】方程組是描述現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,在日常生活、工農(nóng)業(yè)生產(chǎn)、城市規(guī)劃及國防領(lǐng)域都有廣泛的應(yīng)用,列二元一次方程組的關(guān)鍵是尋找相等關(guān)系,尋找相等關(guān)系應(yīng)以下兩方面入手;(1)仔細(xì)審題,尋找關(guān)鍵詞語;(2)采用畫圖、列表等方法挖掘相等關(guān)系.

          例2 一項(xiàng)工程甲單獨(dú)做需12天完成,乙單獨(dú)做需18天完成,計(jì)劃甲先做若干后離去,再由乙完成,實(shí)際上甲只做了計(jì)劃時(shí)間的一半因事離去,然后由乙單獨(dú)承擔(dān),而乙完成任務(wù)的時(shí)間恰好是計(jì)劃時(shí)間的2倍,則原計(jì)劃甲、乙各做多少天?

          分析 由甲、乙單獨(dú)完成所需的時(shí)間可以看出甲、乙兩人的工作效率,設(shè)總工作量為1,則甲每天完成 ,乙每天完成 .

          解:設(shè)原計(jì)劃甲做x天,乙做y天,則有

          解這個(gè)方程組,得

          答:原計(jì)劃甲做8天,乙做6天.

          【解題策略】若總工作量沒有具體給出,可以設(shè)總工作量為單位1,然后由時(shí)間算出工作效率,最后利用工作量=工作效率工作時(shí)間列出方程.

          二、規(guī)律方法專題

          專題3 反復(fù)運(yùn)用加減法解方程組

          【專題解讀】反復(fù)運(yùn)用加減法可使系數(shù)較大的方程組轉(zhuǎn)化成系數(shù)較小的方程組,達(dá)到簡化計(jì)算的'目的.

          例3 解方程組

          分析 當(dāng)方程組中未知數(shù)的系數(shù)和常數(shù)項(xiàng)較大時(shí),注意觀察其特點(diǎn),不要盲目地利用加減法或代入法進(jìn)行消元,可利用反復(fù)相加或相減得到系數(shù)較小的方程組,再求解.

          解:由①-②,得x-y=1,③

          由①+②,得x+y=5,④

          將③④聯(lián)立,得

          解得 即原方程組的解為

          【解題策略】此方程組屬于 型,其中| - |=k|a-b|, + =m|a+b|,k,m為整數(shù).因此這樣的方程組通過相加和相減可得到 型方程組,顯然后一個(gè)方程組容易求解.

          專題4 整體代入法解方程組

          【專題解讀】結(jié)合方程組的形式加以分析,對于用一般代入法和加減法求解比較繁瑣的方程組,靈活靈用整體代入法解題更加簡單.

          例4 解方程組

          分析 此方程組中,每個(gè)方程都缺少一個(gè)未知數(shù),且所缺少的未知數(shù)又都不相同,每個(gè)未知數(shù)的系數(shù)都是1,這樣的方程組若一一消元很麻煩,可考慮整體相加、整體代入的方法.

          解:①+②+③+④,得3(x+y+z+m)=51,

          即x+y+z+m=17,⑤

         、-①,得m=9,⑤-②,得z=5.

          ⑤-③,得y=3,⑤-④,得x=0.

          所以原方程組的解為

          專題5 巧解連比型多元方程組

          【專題解讀】連比型多元方程組通常采用設(shè)輔助未知數(shù)的方法來求解.

          例5 解方程組

          解:設(shè) ,

          則x+y=2k,t+x=3k,y+t=4k,

          三式相加,得x+y+t= ,

          將x+y+t= 代入②,得 =27,

          所以k=6,所以

         、-⑤,得x=3,②-④,得y=9,②-③,得t=15.

          所以原方程組的解為

          三、思想方法專題

          專題6 轉(zhuǎn)化思想

          【專題解讀】對于直接解答有難度或較陌生的題型,可以根據(jù)條件,將其轉(zhuǎn)化成易于解答或比較常見的題型.

          例6 二元一次方程x+y=7的非負(fù)整數(shù)解有 ( )

          A.6個(gè)

          B.7個(gè)

          C.8個(gè)

          D.無數(shù)個(gè)

          分析 將原方程化為y=7-x,因?yàn)槭欠秦?fù)整數(shù)解,所以x只能取0,1,2,3,4,5,6,7,與之對應(yīng)的y為7,6,5,4,3,2,1,0,所以共有8個(gè)非負(fù)整數(shù)解.故選C.

          【解題策略】對二元一次方程求解時(shí),往往需要用含有一個(gè)未知數(shù)的代數(shù)式表示出另一個(gè)未知數(shù),從而將求方程的解的問題轉(zhuǎn)化為求代數(shù)式的值的問題.

          專題7 消元思想

          【專題解讀】 將未知數(shù)的個(gè)數(shù)由多化少,逐一解決的思想即為消元思想.

          例7 解方程組

          分析 解三元一次方程組可類比解二元一次方程組的代入法和加減法,關(guān)鍵是消元,把三元變?yōu)槎倩獮橐辉,進(jìn)而求解.

          解法1:由③得z=2x+2y-3.④

          把④代入①,得3x+4y+2x+2y-3=14,

          即5x+6y=17.⑤

          把④代入②,得x+5y+2(2x+2y-3)=17,

          即5x+9y=23.⑥

          由⑤⑥組成二元一次方程組 解得

          把x=1,y=2代入④,得z=3.

          所以原方程組的解為

          解法2:由①+③,得5x+6y=17.⑦

          由②+③2,得5x+9y=23.⑧

          同解法1可求得原方程組的解為

          解法3:由②+③-①,得3y=6,所以y=2.

          把y=2分別代入①和③,得 解得

          所以原方程組的解為

          【解題策略】消元是解方程組的基本思想,是將復(fù)雜問題簡單化的一種化歸思想,其目的

          是將多元的方程組逐步轉(zhuǎn)化為一元的方程,即三元 二元 一元.

          一次方程組的應(yīng)用教案 篇9

          一、內(nèi)容和內(nèi)容解析

          1.內(nèi)容

          代入消元法解二元一次方程組

          2.內(nèi)容解析

          二元一次方程組是解決含有兩個(gè)提供運(yùn)算未知數(shù) 的問題的有力工具,也是解決后續(xù)一些數(shù)學(xué)問題的基礎(chǔ)。其解法將為解決這些問題的工具。如用待定系數(shù)法求一次函數(shù)解析式,

          在平面直角坐標(biāo)系中求兩直線交點(diǎn)坐標(biāo)等.

          解二元一次方程組就是要把二元化為一元。而化歸的方法就是代入消元法,這一方法同樣是解三元一次方程組的基本思路,是通法。化歸思想在本節(jié)中有很好的體現(xiàn)。

          本節(jié)課的教學(xué)重點(diǎn)是:會(huì)用代入消元法解一些簡單的二元一次方程組,體會(huì)解二元一次方程組的思路是消元.

          二、目標(biāo)和目標(biāo)解析

          1.教學(xué)目標(biāo)

          (1)會(huì)用代入消元法解一些簡單的二元一次方程組

          (2)理解解二元一次方程組的思路是消元,體會(huì)化歸思想

          2.教學(xué)目標(biāo)解析

          (1)學(xué)生能掌握代入消元法解一些簡單的二元一次方程組的一般步驟,并能正確求出簡單的二元一次方程組的解,

          (2)要讓學(xué)生經(jīng)歷探究的過程.體會(huì)二元一次方程組的解法與一元一次方程的解法的關(guān)系,進(jìn)一步體會(huì)消元思想和化歸思想

          三、教學(xué)問題診斷分析

          1.學(xué)生第一次遇到二元問題,為什么要向一元轉(zhuǎn)化,如何進(jìn)行轉(zhuǎn)化。需要結(jié)合實(shí)際問題進(jìn)行分析。由于方程組的兩個(gè)方程中同一個(gè)未知數(shù)表示的是同一數(shù)量,通過觀察對照,可以發(fā)現(xiàn)二元一次方程組向 一元一次方程轉(zhuǎn)化的思路

          2.解二元一次方程組的步驟多,每一步需要理解每一步的目的和依據(jù),正確進(jìn)行操作,把探究過程分解細(xì)化,逐一實(shí)施。

          本節(jié)教學(xué)難點(diǎn)理:把二元向一元的轉(zhuǎn)化,掌握代入消元法解二元一次方程組的一般步驟。

          四、教學(xué)過程設(shè)計(jì)

          1.創(chuàng)設(shè)情境,提出問題

          問題1

          籃球聯(lián)賽中,每場都要分出勝負(fù),每隊(duì)勝1場得2分,負(fù)1場得1分,某隊(duì)10場比賽中得到16分,那么這個(gè)隊(duì)勝負(fù)場數(shù)分別是多少?你能用一元一次方程解決這個(gè)問題嗎?

          師生活動(dòng):學(xué)生回答:能。設(shè)勝x場,負(fù)(10-x)場。根據(jù)題意,得2x+(10-x)=16

          x=6,則勝6場,負(fù)4場

          教師追問:你能根據(jù)問題中的等量關(guān)系列出二元一次方程組嗎?

          師生活動(dòng):學(xué)生回答:能.設(shè)勝x場,負(fù)y場.根據(jù)題意,得

          我們在上節(jié)課,通過列表找公共解的方法得到了這個(gè)方程組的解,x=6,y=4.顯然這樣的方法需要一個(gè)個(gè)嘗試,有些麻煩,能不能像解一元一次方程那樣來求出方程組的解呢?

          這節(jié)課我們就來探究如何解二元一次方程組.

          設(shè)計(jì)意圖:用引言的問題引人本節(jié)課內(nèi)容,先列一元一次方程解決這個(gè)問題,再二元一次方程組,為后面教學(xué)做好了鋪墊.

          問題2 對比方程和方程組,你能發(fā)現(xiàn)它們之間的關(guān)系嗎?

          師生活動(dòng):通過對實(shí)際問題的分析,認(rèn)識(shí)方程組中的兩個(gè)y都是這個(gè)隊(duì)的負(fù)場數(shù),由此可以由一個(gè)方程得到y(tǒng)的表達(dá)式,并把它代入另一個(gè)方程,變二元為一元,把陌生知識(shí)轉(zhuǎn)化為熟悉的知識(shí)。

          師生活動(dòng):根據(jù)上面分析,你們會(huì)解這個(gè)方程組了嗎?

          學(xué)生回答:會(huì).

          由①,得y=10-x ③

          把③代入②,得2x+(10-x)=16 x=6

          設(shè)計(jì)意圖:共同探究,體會(huì)消元的過程.

          問題3 教師追問:你能把③代入①嗎?試一試?

          師生活動(dòng):學(xué)生回答:不能,通過嘗試,x抵消了.

          設(shè)計(jì)意圖:由于方程③是由方程①,得來的,它不能又代回到它本身。讓學(xué)生實(shí)際操作,得到體驗(yàn),更好地認(rèn)識(shí)這一點(diǎn).

          教師追問:你能求y的值嗎?

          師生活動(dòng):學(xué)生回答:把x=6代入③得y=4

          教師追問:還能代入別的方程嗎?

          學(xué)生回答:能,但是沒有代入③簡便

          教師追問:你能寫出這個(gè)方程組的解,并給出問題的答案嗎?

          學(xué)生回答:x=6,y=4,這個(gè)隊(duì)勝6場,負(fù)4場

          設(shè)計(jì)意圖:讓學(xué)生考慮求另一個(gè)未知數(shù)的過程,并如何優(yōu)化解法。

          師生活動(dòng):先讓學(xué)生獨(dú)立思考,再追問.在這種解法中,哪一步最關(guān)鍵?為什么?

          學(xué)生回答:代入這一步

          教師總結(jié):這種方法叫代入消元法。

          教師追問:你能先消x嗎?

          學(xué)生紛紛動(dòng)手完成。

          設(shè)計(jì)意圖:讓學(xué)生嘗試不同的`代入消元法,為后面學(xué)習(xí)選擇簡單的代入方法做鋪墊.

          2. 應(yīng)用新知,拓展思維

          例 用代入法解二元一次方程組

          師生活動(dòng),把學(xué)生分兩組,一組先消x, 一組先消y,然后每組各派一名代表上黑板完成。

          設(shè)計(jì)意圖:借助本題,充分發(fā)揮學(xué)生的合作探究精神,通過比較,讓學(xué)生自主認(rèn)識(shí)代入消元法,并學(xué)會(huì)優(yōu)選解法.

          3.加深認(rèn)識(shí),鞏固提高

          練習(xí) 用代入法解二元一次方程組

          設(shè)計(jì)意圖:提醒并指導(dǎo)學(xué)生要先分析方程組的結(jié)構(gòu)特征,學(xué)會(huì)優(yōu)選解法。在練習(xí)的基礎(chǔ)上熟練用代入消元法解二元一次方程組.

          4.歸納總結(jié),知識(shí)升華

          師生活動(dòng),共同回顧本節(jié)課的學(xué)習(xí)過程,并回答以下問題

          1. 代入消元法解二元一次方程組有哪些步驟?

          2. 解二元一次方程組的基本思路是什么?

          3.在探究解法的過程中用到了哪些思想方法?

          4.你還有哪些收獲?

          設(shè)計(jì)意圖:通過這一活動(dòng)的設(shè)計(jì),提高學(xué)生對所學(xué)知識(shí)的遷移能力和應(yīng)用意識(shí);培養(yǎng)學(xué)生自我歸納概括的能力.

          5. 布置作業(yè)

          教科書第93頁第2題

          五、目標(biāo)檢測設(shè)計(jì)

          用代入法解下列二元一次方程組

          設(shè)計(jì)意圖:考查學(xué)生對代入法解二元一次方程組的掌握情況.

          一次方程組的應(yīng)用教案 篇10

          教學(xué)目標(biāo):

          1.會(huì)用加減消元法解二元一次方程組.

          2.能根據(jù)方程組的特點(diǎn),適當(dāng)選用代入消元法和加減消元法解二元一次方程組.

          3.了解解二元一次方程組的消元方法,經(jīng)歷從“二元”到“一元”的轉(zhuǎn)化過程,體會(huì)解二元一次方程組中化“未知”為“已知”的“轉(zhuǎn)化”的思想方法.

          教學(xué)重點(diǎn):

          加減消元法的理解與掌握

          教學(xué)難點(diǎn):

          加減消元法的靈活運(yùn)用

          教學(xué)方法:

          引導(dǎo)探索法,學(xué)生討論交流

          教學(xué)過程:

          一、情境創(chuàng)設(shè)

          買3瓶蘋果汁和2瓶橙汁共需要23元,買5瓶蘋果汁和2瓶橙汁共需33元,每瓶蘋果汁和每瓶橙汁售價(jià)各是多少?

          設(shè)蘋果汁、橙汁單價(jià)為x元,y元.

          我們可以列出方程3x+2y=23

          5x+2y=33

          問:如何解這個(gè)方程組?

          二、探索活動(dòng)

          活動(dòng)一:1、上面“情境創(chuàng)設(shè)”中的方程,除了用代入消元法解以外,還有其他方法求解嗎?

          2、這些方法與代入消元法有何異同?

          3、這個(gè)方程組有何特點(diǎn)?

          解法一:3x+2y=23①

          5x+2y=33②

          由①式得③

          把③式代入②式

          33

          解這個(gè)方程得:y=4

          把y=4代入③式

          則

          所以原方程組的.解是x=5

          y=4

          解法二:3x+2y=23①

          5x+2y=33②

          由①—②式:

          3x+2y-(5x+2y)=23-33

          3x-5x=-10

          解這個(gè)方程得:x=5

          把x=5代入①式,

          3×5+2y=23

          解這個(gè)方程得y=4

          所以原方程組的解是x=5

          y=4

          把方程組的兩個(gè)方程(或先作適當(dāng)變形)相加或相減,消去其中一個(gè)未知數(shù),把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解方程組的方法叫做加減消元法(eliminationbyadditionorsubtraction),簡稱加減法.

          三、例題教學(xué):

          例1.解方程組x+2y=1①

          3x-2y=5②

          解:①+②得,4x=6

          將代入①,得

          解這個(gè)方程得:

          所以原方程組的解是

          鞏固練習(xí)(一):練一練1.(1)

          例2.解方程組5x-2y=4①

          2x-3y=-5②

          解:①×3,得

          15x-6y=12③

          ②×3,得

          4x-6y=-10④

          ③—④,得:

          11x=22

          解這個(gè)方程得x=2

          將x=2代入①,得

          5×2-2y=4

          解這個(gè)方程得:y=3

          所以原方程組的解是x=2

          y=3

          鞏固練習(xí)(二):練一練1.(2)(3)(4)2.

          四、思維拓展

          解方程組:

          五、小結(jié):

          1、掌握加減消元法解二元一次方程組

          2、靈活選用代入消元法和加減消元法解二元一次方程組

          六、作業(yè)

          習(xí)題10.31.(3)(4)2.

        【一次方程組的應(yīng)用教案】相關(guān)文章:

        離心現(xiàn)象及其應(yīng)用教案04-23

        小數(shù)加減法綜合應(yīng)用教案(通用10篇)05-22

        應(yīng)用文寫作總結(jié)的格式介紹12-12

        解一元一次方程的教案(精選11篇)12-05

        列方程解應(yīng)用題的常用公式總結(jié)12-07

        二次函數(shù)應(yīng)用的教學(xué)反思(通用16篇)07-09

        解一元一次方程教案設(shè)計(jì)(精選14篇)11-16

        一元一次方程的算法優(yōu)秀教案(通用10篇)08-01

        淺論中國傳統(tǒng)吉祥圖案在標(biāo)志設(shè)計(jì)中的應(yīng)用論文04-22

        用戶協(xié)議
        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>