勾股定理的教案
勾股定理的教案
1、勾股定理
勾股定理:如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2.
即直角三角形兩直角的平方和等于斜邊的平方.
因此,在運(yùn)用勾股定理計(jì)算三角形的邊長(zhǎng)時(shí),要注意如下三點(diǎn):
(1)注意勾股定理的使用條件:只對(duì)直角三角形適用,而不適用于銳角三角形和鈍角三角形;
。2)注意分清斜邊和直角邊,避免盲目代入公式致錯(cuò);
。3)注意勾股定理公式的變形:在直角三角形中,已知任意兩邊,可求第三邊長(zhǎng).即c2=a2+b2,a2=c2-b2,b2=c2-a2.
2.學(xué)會(huì)用拼圖法驗(yàn)證勾股定理
拼圖法驗(yàn)證勾股定理的基本思想是:借助于圖形的面積來(lái)驗(yàn)證,依據(jù)是對(duì)圖形經(jīng)過(guò)割補(bǔ)、拼接后面積不變的原理.
如,利用四個(gè)如圖1所示的直角三角形三角形,拼出如圖2所示的三個(gè)圖形.
請(qǐng)讀者證明.
如上圖示,在圖(1)中,利用圖1邊長(zhǎng)為a,b,c的四個(gè)直角三角形拼成的一個(gè)以c為邊長(zhǎng)的正方形,則圖2(1)中的小正方形的邊長(zhǎng)為(b-a),面積為(b-a)2,四個(gè)直角三角形的面積為4×ab=2ab.
由圖(1)可知,大正方形的面積=四個(gè)直角三角形的面積+小正方形的的面積,即c2=(b-a)2+2ab,則a2+b2=c2問(wèn)題得證.
請(qǐng)同學(xué)們自己證明圖(2)、(3).
3.在數(shù)軸上表示無(wú)理數(shù)
將在數(shù)軸上表示無(wú)理數(shù)的問(wèn)題轉(zhuǎn)化為化長(zhǎng)為無(wú)理數(shù)的線段長(zhǎng)問(wèn)題.第一步:利用勾股定理拆分出哪兩條線段長(zhǎng)的平方和等于所畫線段(斜邊)長(zhǎng)的平方,注意一般其中一條線段的長(zhǎng)是整數(shù);第二步:以數(shù)軸原點(diǎn)為直角三角形斜邊的頂點(diǎn),構(gòu)造直角三角形;第三步:以數(shù)軸原點(diǎn)圓心,以斜邊長(zhǎng)為半徑畫弧,即可在數(shù)軸上找到表示該無(wú)理數(shù)的點(diǎn).
二、典例精析
例1如果直角三角形的斜邊與一條直角邊的長(zhǎng)分別是13cm和5cm,那么這個(gè)直角三角形的面積是cm2.
分析:欲求直角三角形的面積,已知一直角三角形的斜邊與一條直角邊的長(zhǎng),則求得另一直角邊的長(zhǎng)即可.根據(jù)勾股定理公式的變形,可求得.
解:由勾股定理,得
132-52=144,所以另一條直角邊的長(zhǎng)為12.
所以這個(gè)直角三角形的面積是×12×5=30(cm2).
例2如圖3(1),一只螞蟻沿棱長(zhǎng)為a的正方體表面從頂點(diǎn)A爬到
頂點(diǎn)B,則它走過(guò)的最短路程為()
A.B.C.3aD.分析:本題顯然與例2屬同種類型,思路相同.但正方體的
各棱長(zhǎng)相等,因此只有一種展開(kāi)圖.
解:將正方體側(cè)面展開(kāi)
【勾股定理的教案】相關(guān)文章:
證明勾股定理的4種方法04-03
《左傳》教案10-24
存貨教案02-28
《牧場(chǎng)上的家教案》經(jīng)典教案設(shè)計(jì)03-20
茶花賦教案04-06
《什么蟲(chóng)》教案01-08
《文化苦旅》教案02-27
大學(xué)教案的寫法10-05
《認(rèn)識(shí)鐘表》的教案03-19